高溫合金耐高溫性能熱處理
簡要描述:高溫合金耐高溫性能熱處理一、GH3044鎳基高溫合金概述:GH3044是固溶強化鎳基抗氧化合金,在900℃以下具有高的塑性和中等的熱強性,并具有優(yōu)良的抗氧化性和良好的沖壓、焊接工藝性能,適宜制造在900℃以下長期工作的航空發(fā)動機主燃燒室和加力燃燒室零部件以及隔熱屏、導(dǎo)向葉片,供應(yīng)的品種有板材、帶材、絲材、棒材和環(huán)形件等。1、GH3044 材料牌號:GH3044(GH44)2、GH30
產(chǎn)品型號: GH3044(GH44)
更新時間:2022-11-05
訪問數(shù)量:918
廠商性質(zhì):生產(chǎn)廠家
高溫合金耐高溫性能熱處理
GH3044合金是一種固溶強化的裸基抗氧化合金,在900T以下具有較高的塑性和適中的熱強度,抗氧化性能優(yōu)異。適合制造900%:以下航空發(fā)動機主燃燒室、加力燃燒室零件長期。在實際服役條件下,由于長期高溫和復(fù)雜交變載荷的作用,航空發(fā)動機熱端零件經(jīng)常發(fā)生高應(yīng)力(應(yīng)變)水平的低周疲勞損傷。因此,高溫下應(yīng)變和疲勞造成的損傷成為影響此類部件使用壽命的一個不可忽視的因素。對GH3044合金在600 D應(yīng)變控制模式下的低周疲勞性能進行了分析和測試,研究了其循環(huán)應(yīng)力應(yīng)變響應(yīng)行為、應(yīng)變壽命關(guān)系等。被研究過介紹了該合金在應(yīng)變控制下疲勞變形和損傷的一般規(guī)律,并利用各種模型預(yù)測了該合金的疲勞壽命,可為該合金的成分設(shè)計、壽命確定和壽命延長提供參考。
試驗材料 實驗材料為GH3044棒材,其密度為8。89×10 ×,采用電弧爐和真空自耗再溶解工藝熔煉kg/m3o合金,軋制成直徑為18mm×1000mm的棒材。固溶(H40°C,保溫1h,空冷)后,按照圖1加工成低周疲勞試樣進行試驗。合金的化學(xué)成分如表
檢測方法 低周疲勞試驗在島津EHF-EA10電液伺服疲勞試驗機上進行。試驗采用軸向全應(yīng)變控制。引伸計的標距為12mm,標距內(nèi)的應(yīng)變通過引伸計與樣品表面通過應(yīng)時刀口接觸來測量。加載波形為總角波,應(yīng)變比(最小應(yīng)變與最大應(yīng)變之比)為-1,試驗溫度為600t·t,試樣由爐內(nèi)電阻絲加熱,溫度波動由分布在標距附近的熱電偶控制,溫度波動控制在2以內(nèi)。實驗的數(shù)據(jù)采集由計算機完成,每次實驗進行到樣品斷裂。鋼絞線試驗方法參照GB/T 15248- 2008《金屬材料軸向等幅低周試驗方法》的規(guī)定。超聲波清洗后,用JSM 5600LV掃描電鏡觀察斷裂試樣。
循環(huán)應(yīng)力應(yīng)變行為 材料的循環(huán)應(yīng)力應(yīng)變性能反映了材料在低周疲勞下的真實應(yīng)力應(yīng)變特性。循環(huán)應(yīng)力應(yīng)變關(guān)系可以用應(yīng)力幅和塑性應(yīng)變幅(3)來表示,即公式(1):
高溫合金耐高溫性能熱處理其中A//2為循環(huán)應(yīng)力幅,優(yōu),/2為循環(huán)塑性應(yīng)變幅,<為循環(huán)硬化指數(shù),top為循環(huán)強度系數(shù)。圖2顯示了GH3044合金在600℃下的循環(huán)應(yīng)力-應(yīng)變關(guān)系曲線,圖中的所有數(shù)據(jù)點都是從半衰期(N/2)時的循環(huán)磁滯回線獲得的。根據(jù)公式(1 ),可以通過使用雙對數(shù)坐標對數(shù)據(jù)進行線性回歸分析來獲得/和k’的值,如表2所示。圖中實線是擬合實驗數(shù)據(jù)得到的近似曲線。
循環(huán)應(yīng)力響應(yīng)行為 在低周疲勞性能試驗中,對于每個給定的總應(yīng)變幅值,記錄應(yīng)力值隨循環(huán)次數(shù)的變化。應(yīng)力隨循環(huán)次數(shù)的變化(即材料的循環(huán)應(yīng)力響應(yīng)曲線)宏觀上反映了合金在不同溫度和其他實驗條件下的應(yīng)變硬化/軟化行為,是材料微觀結(jié)構(gòu)變化的宏觀表現(xiàn)。圖3顯示了GH3044合金在600噸下的循環(huán)應(yīng)力響應(yīng)曲線。從圖3可以看出,在不同的外加總應(yīng)變幅下,GH3044合金600始終表現(xiàn)出循環(huán)硬化現(xiàn)象。這是因為在疲勞循環(huán)變形過程中,位錯之間以及位錯與析出物之間的相互作用會強烈阻礙位錯運動,從而導(dǎo)致位錯堵塞。因此,必須增加外加載荷以保持應(yīng)變不變,這將導(dǎo)致循環(huán)應(yīng)力的增加,即循環(huán)硬化(1);圖中還有一個重音的突降。這種驟降是由于材料在反復(fù)循環(huán)變形后的疲勞損傷,導(dǎo)致裂紋失穩(wěn)擴展階段。
Manson-Coffin方程 目前,國內(nèi)材料數(shù)據(jù)手冊中采用Manson-Coffin方程來處理低周疲勞。對于總應(yīng)變控制的低周疲勞試驗,總應(yīng)變幅由兩部分(3)組成:巖溶應(yīng)變幅和彈性應(yīng)變幅,即:
它們是彈性應(yīng)變幅、塑性應(yīng)變幅和總應(yīng)變幅。對于沒有穩(wěn)定遲滯回線的材料,塑性應(yīng)變幅值和彈性應(yīng)變幅值通常由半衰期的應(yīng)力-應(yīng)變遲滯回線得到。此外,它們與疲勞壽命有以下關(guān)系:
其中,er '是疲勞強度系數(shù),即疲勞延展性系數(shù),2是斷裂時載荷的倒數(shù),6是疲勞強度指數(shù),C是疲勞延展性指數(shù),E是彈性模量MPa。為了更實際地反映低周疲勞特性,循環(huán)條件下的動態(tài)彈性模量作為實際運行中的彈性模量。總應(yīng)變幅值和材料低周疲勞壽命之間的關(guān)系可表示如下:
循環(huán)應(yīng)力響應(yīng)行為 在低周疲勞性能試驗中,對于每個給定的總應(yīng)變幅值,記錄應(yīng)力值隨循環(huán)次數(shù)的變化。應(yīng)力隨循環(huán)次數(shù)的變化(即材料的循環(huán)應(yīng)力響應(yīng)曲線)宏觀上反映了合金在不同溫度和其他實驗條件下的應(yīng)變硬化/軟化行為,是材料微觀結(jié)構(gòu)變化的宏觀表現(xiàn)。圖3顯示了GH3044合金在600噸下的循環(huán)應(yīng)力響應(yīng)曲線。從圖3可以看出,在不同的外加總應(yīng)變幅下,GH3044合金600始終表現(xiàn)出循環(huán)硬化現(xiàn)象。這是因為在疲勞循環(huán)變形過程中,位錯之間以及位錯與析出物之間的相互作用會強烈阻礙位錯運動,從而導(dǎo)致位錯堵塞。因此,必須增加外加載荷以保持應(yīng)變不變,這將導(dǎo)致循環(huán)應(yīng)力的增加,即循環(huán)硬化。圖中還有一個重音的突降。這種驟降是由于材料在反復(fù)循環(huán)變形后的疲勞損傷,導(dǎo)致裂紋失穩(wěn)擴展階段。
5低周疲勞斷口形貌 觀察了GH3044和600Y的低周疲勞斷口形貌。當應(yīng)變幅較大時,斷口的疲勞區(qū)較小,斷口的疲勞區(qū)所占比例較大。疲勞斷裂有三個區(qū)域,即疲勞源區(qū)、擴展區(qū)和瞬時斷裂區(qū)。畫圖7和圖8分別顯示了GH3044合金600 dragon的高應(yīng)變振幅。 (△旦尼爾/2 = 0。8%,這里= 570)和低應(yīng)變幅(優(yōu)/2 = 0.3%,稱為=13215)。從圖中可以看出,在不同的應(yīng)變幅下,疲勞裂紋都是沿試樣表面起始的,但在高應(yīng)變幅下,疲勞裂紋是沿試樣表面多點起始的(見圖7a),在源區(qū)附近可以看到明顯的徑向脊狀形貌;然而,在低應(yīng)變幅下,疲勞斷裂源于試樣表面,是一個點源(見圖8a)。在不同的應(yīng)變幅下,在膨脹區(qū)可以看到明顯的疲勞帶和二次裂紋(見圖7b和圖8b),瞬時斷裂區(qū)以韌窩斷裂為特征,但韌窩較淺,有劃痕(見圖7c和圖8c)。
結(jié)論
(1)GH3044合金在600Y時在不同應(yīng)變振幅下表現(xiàn)出循環(huán)硬化; (2) Manson- Coffin方程、三參數(shù)μ函數(shù)方程和拉伸滯回能量模型(。Stergren)對GH3044合金600的壽命預(yù)測精度基本在彌散帶的2倍以內(nèi),但拉伸滯后能量模型在標準差和彌散帶方面的壽命預(yù)測精度優(yōu)于Manson-Coffin方程和三參數(shù)簾函數(shù)公式。 (3)疲勞裂紋均起源于試樣表面,但在高應(yīng)變幅下表現(xiàn)為多源特征,在低應(yīng)變幅下表現(xiàn)為單源特征。